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ABSTRACT
Ballistic–diffusive heat conduction, which is predominantly affected by
boundaries and interfaces, will occur in nanostructures whose characteristic
lengths are comparable to the phonon mean free path (MFP). Here, we
demonstrated that interactions between phonons and boundaries (or inter-
faces) could lead to two kinds of slip boundary conditions in the ballistic–
diffusive regime: boundary temperature jump and boundary heat flux slip.
The phonon Boltzmann transport equation (BTE) with relaxation time
approximation and the phonon tracing Monte Carlo (MC) method were
used to investigate these two slip boundary conditions for the ballistic–
diffusive heat conduction in nanofilms on a substrate. For cross-plane heat
conduction where the boundary temperature jump is the dominant non-
Fourier phenomenon, ballistic transport causes the temperature jumps and
thus introduces a ballistic thermal resistance. Importantly, when considering
the interface effect, the corresponding model was derived based on the
phonon BTE and verified by comparing with the MC simulations. In addi-
tion, an interface–ballistic coupling effect was identified, which indicates
inapplicability of the standard thermal resistance analysis. In contrast, for
the in-plane case that is controlled by boundary heat flux slip, both phonon
boundary scattering and perturbation of the phonon distribution function
induced by the interface can cause heat flux slip, leading to a variation in in-
plane thermal resistance. In addition, a model beyond the Fuchs-
Sondheimer formula, which can address both the boundary scattering
and the interface effects, was derived based on the phonon BTE. The
good agreements with the MC simulations indicate its validity.

ARTICLE HISTORY
Received 6 May 2017
Accepted 16 June 2017

KEYWORDS
Ballistic–diffusive heat
conduction; slip boundary
condition; phonon
Boltzmann transport
equation; Monte Carlo

Introduction

Rapid development of nanotechnologies necessitates an in-depth understanding of nanoscale ther-
mal transport [1, 2]. In nanostructures whose characteristic lengths are comparable to the phonon
mean free path (MFP), thermal transport could significantly deviate from the prediction based on
Fourier’s law, leading to ballistic–diffusive heat conduction [2]. Boundaries and interfaces dominate
phonon transport in the ballistic–diffusive regime, and most of the non-Fourier phenomena in this
case could be attributed to phonon–boundary (or interface) interactions [2–5]. Therefore, the study
on boundary conditions is essentially important for a better understanding of ballistic–diffusive heat
conduction, and it can also provide an efficient way to characterize nanoscale thermal transport by
using the classical Fourier’s law modified with slip boundary conditions [6–10].
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As is well known, slip boundary conditions have been extensively investigated in fluid mechanics
[11]. In addition, in the ballistic–diffusive heat conduction, the interactions between phonons and
boundaries cause two types of slip boundary conditions: boundary temperature jump [12–16] and
boundary heat flux slip [17–20]. As shown in Figure 1, in the diffusive regime, the boundary
temperature should be equal to the temperature of the contacted phonon bath, whereas in the
ballistic–diffusive regime, a difference between the boundary temperature and the phonon bath
temperature could exist, called the boundary temperature jump [6, 7]. Some works have been
conducted on the temperature jumps at the ideal and reflectionless boundary (i.e., the phonon
black-body boundary) [6, 7, 15]. Hua and Cao [6] used the differential approximation method to
derive the boundary temperature jump model in this case, and they found that the boundary
temperature jump is proportional to both the phonon MFP and the local temperature gradient. In
addition, Maassen and Lundstrom [7, 8] obtained a similar formula for the boundary temperature
jump by using the McKelvey-Shockley flux method. The work of Sellan et al. [15] demonstrated that
the boundary temperature jumps could cause a reduction in effective thermal conductivities and thus
increase the total thermal resistance. In fact, there is one critical issue about the boundary tempera-
ture jumps that still remains unclarified; that is, the interface effect, which usually exists at
boundaries. For example, Wilson and Cahill [21] proposed that the interfacial resistance and ballistic
effect could be coupled, which plays an important role in time-domain thermoreflectance experi-
ments where a metal film transducer is needed.

Additionally, for a purely diffusive heat conduction process, Fourier’s law will predict a uniform
heat flux distribution in the case as shown in Figure 2, because no temperature gradient exists in the
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Figure 1. (a) Schematic diagram of cross-plane heat conduction in a nanofilm: a nanofilm with x-directional length, Lx, in contact
with two phonon baths of temperatures Th and Tc; (b) temperature jumps, ΔTh and ΔTc , occur at the boundaries.
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Figure 2. (a) Schematic diagram of boundary heat flux slip in a suspended in-plane nanofilm: the y-directional thickness is Ly, and
the heat flux qðyÞ along the x-direction varies in the y-direction; (b) schematic diagram of boundary heat flux slip in an in-plane
nanofilm labeled “a” on a substrate labeled by “b”: the nanofilm thickness is Lya, the substrate thickness is Lyb, and Lya < Lyb.
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lateral direction. On the contrary, in the ballistic–diffusive regime, the heat flux near the lateral
boundaries (or interfaces) could be influenced by the phonon–boundary (or interfaces) interactions,
called boundary heat flux slip [18, 20]. Ziman [22] derived the heat flux distribution formulas for
suspended films and wires based on the phonon Boltzmann transport equation (BTE) and found that
the heat flux is reduced near the boundaries due to the diffusive phonon–boundary scattering. In
addition, in the theoretical frame of phonon hydrodynamics, Sellitto et al. [18] proposed a phenom-
enological boundary heat flux slip model analogous to the well-known velocity slip boundary
condition model in fluid mechanics. The roughness and interface significantly influence the bound-
ary heat flux slip. In Ziman’s [22] pioneering work, the influence of boundary roughness was
characterized using a specularity parameter. Martin et al. [23] employed perturbation theory to
compute the frequency-dependent phonon–boundary scattering rate, which depends on the root
mean square roughness height and autocovariance length. In practice, a nanofilm cannot always be
suspended, and the existence of a substrate (i.e., interface) leads to perturbation of the phonon
distribution function and thus has an influence on the heat flux distribution [24, 25]. Several
researchers have discussed this substrate effect on the thermal conductivity of some single-layer or
multiple-layer two-dimensional materials [26–28], though its influence on heat flux distribution
requires more in-depth investigation and, importantly, a reliable predictive model considering
substrate effects is still lacking.

In the present work, we analyzed the slip boundary conditions for ballistic–diffusive heat
conduction in nanofilms on a substrate, which have been widely utilized in electronic devices [1].
The phonon BTE with relaxation time approximation was used to derive the corresponding
analytical models. A phonon tracing Monte Carlo (MC) technique was used to simulate the
phonon transport for comparison with the derived theoretical models. Generally, thermal trans-
port in nanofilms can be clarified into two typical types; that is, cross-plane heat conduction and
in-plane heat conduction. Boundary temperature jump is the dominant non-Fourier phenom-
enon for the cross-plane case, whereas the in-plane case is controlled by boundary heat flux slip.
Here, we highlight the interface effects on these two slip boundary conditions, which have not
been well clarified in the previous works. A more in-depth understanding as well as analytical
models of the ballistic–interface coupling effects in ballistic–diffusive heat conduction have been
provided, which could be helpful for predicting and controlling thermal transport in
nanostructures.

Methodology

The phonon BTE with relaxation time approximation is given by [2, 22]

~vgω � �fω ¼ f0ω � fω
τω

; (1)

where ω is the angular frequency,~vgω is the group velocity, fω is the phonon distribution function, f0ω is the
equilibrium distribution function, and τω is the relaxation time. In order to verify our derived theoretical
models, a phonon tracing MC method [29–31] has been used to simulate phonon transport process in
nanofilms, which is equivalent to numerically solving the phonon BTE. This technique is able to handle
problems with complicated geometries as well as multiple scattering events and transient heat conduction
processes. Péraud and Hadjiconstantinou [29] and Hua and Cao [30] used it to investigate the heat
conduction in various nanostructures, including nanofilms, nanowires, and nanoporous materials, and it
has been found that the phonon tracingMC simulations well predict the results by both theoretical models
and experiments. In addition, Tang et al. [31] used this technique to simulate the ultrafast heat conduction
in nanostructures, in which ballistic effects could be coupled with heat wave effects.

The trajectories of individual phonons are simulated independently in the phonon tracing MC
simulation. Basically, it includes six procedures [30]:
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(1) Input phonon properties and set the total number of phonon bundles.
(2) Draw the initial properties of the phonon bundle according to the nature of emitting

boundaries (these properties, including initial position, traveling direction, angular fre-
quency, etc., are determined by random number samplings).

(3) Calculate the traveling length until the first scattering event and renew the position of
phonon bundles.

(4) When a phonon bundle collides with a boundary, renew the phonon bundle position at the
boundary (if the boundary is nonabsorbing or adiabatic, the phonon bundle should be
reflected back into the domain).

(5) If a phonon bundle does not collide with boundaries, the phonon bundle should be
reemitted within the media, and the tracing process then proceeds to (c).

(6) If the phonon bundle arrives at an absorbing boundary, the tracing process of this phonon
bundle is finished, and the simulation then proceeds to (b) and then begins the tracing
process of the next phonon bundle.

Boundary temperature jump

Boundary temperature jump at ideal and reflectionless boundary

We begin by analyzing the boundary temperature jump in cross-plane heat conduction. As shown in
Figure 1, the cross-plane nanofilm is in contact with the phonon baths of temperatures Th and Tc,
respectively. The boundaries are firstly assumed to be ideal and reflectionless (i.e., phonon black-
body) [6, 7] and thus the phonons arriving at the boundaries will be absorbed. Consider the
boundary condition at x = 0. Due to the law of conservation of energy, the heat flux at the boundary
should be continuous; that is,

qx ¼ qþx � q�x ; (2)

where qx is the net heat flux, and qþx and q�x are the positive and negative directional heat fluxes,
respectively. The net heat flux is calculated as

qx ¼ �
2π

0
dφ �

1

�1
μdμ � �hωvgD ωð Þdωfω; (3)

in which φ is the azimuthal angle, μ ¼ cosðθÞ in which θ is the polar angle between the phonon
traveling direction and the x-axis, �h is the Dirac constant, and DðωÞ is the density of states. The
negative directional heat flux is

q�x ¼ � �
2π

0
dφ �

0

�1
μdμ � �hωvgD ωð Þdωfω: (4)

The positive heat flux, which depends on the properties of the phonon bath, can be expressed as

qþx ¼ �
2π

0
dφ �

1

0
μdμ � �hωvgD ωð Þdωf0ωðThÞ: (5)

According to Hua and Cao [6], the phonon BTE can be simplified by differential approximation
[32]; that is,
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fω ¼ f0ω � vgωτωμ
@f0ω
@x

; (6)

which considers the first-order deviation from local equilibrium. It is noted that the differential
approximation alone could fail when the ballistic effect becomes significant [9], though several works
[6–8] have already demonstrated that the differential approximation, which is also equivalent to the
McKelvey-Shockley flux approach [7], could well predict the ballistic–diffusive thermal transport
once the boundary conditions are properly specified.

For simplicity and clarity, the gray approximation is adopted and thus we have [32]

@ � �hωvgωD ωð Þdωf0ω Tð Þ� �
@T

¼ CVvg
4π

; (7)

where CV is the heat capacity and vg is the average group velocity. Then, combining Eqs. (3), (6), and
(7), the net heat flux is given by

qx ¼ �CVvgl0
3

@T
@x

; (8)

where l0¼vgτ is the average phonon MFP, and k0 ¼ CVvgl0=3 is the benchmarked thermal con-
ductivity. Under the differential approximation, the net heat flux can be characterized by the classical
Fourier’s law, because the leading first-order deviation can be eliminated via the integral over the
whole solid angle space within the medium. The ballistic effect mainly occurs at boundaries and thus
a proper slip boundary condition should be important in this case. Then, using Eqs. (4), (5), and (6),
we have

q�x ¼ CVvgT

4
þ CVvgl0

6
@T
@x

; (9)

qþx ¼ CVvgTh

4
: (10)

In terms of the continuous condition of boundary heat flux, Eq. (2), the temperature jump at x = 0 is
given by

Th � Tj0 ¼ � 2l0
3
@T
@x

���
0
¼ 2

CVvg
qxj0: (11)

Furthermore, following similar procedures, the boundary temperature jump condition at x = L can
be obtained:

TjLx � Tc ¼ � 2l0
3
@T
@x

���
Lx
¼ 2

CVvg
qxjLx : (12)

Combining Eqs. (8), (11), and (12) yields the temperature distribution within the nanofilms,

TðxÞ ¼
Th þ ðTc � ThÞ x

Lx

h i
þ 2

3KnxðTc þ ThÞ
1þ 4

3Knx
; (13)

in which Knx ¼ l0=Lx is the Knudsen number. As Knx ! 0, Eq. (13) is reduced to the completely
diffusive solution, TðxÞ ¼ Tc þ ðTh � TcÞx=Lx; as Knx ! 1, Eq. (13) becomes TðxÞ ¼ ðTh þ TcÞ=2,
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which is the Casimir limit [13] in the purely ballistic regime. Figure 3 shows the temperature
distributions in cross-plane nanofilms with ideal and reflectionless boundaries. When Knx ¼ 0:01,
the ballistic transport effect is negligible and thus Fourier’s law well predicts the temperature profile
obtained by the MC simulations. With increasing Knudsen number, Knx, the boundary temperature
jumps occur and increase, leading to a deviation from Fourier’s law, though the temperature profiles
are still linear within the nanofilms. In addition, the results predicted by Eq. (13) agree well with
those by MC simulations, especially when the Knudsen number is small. Due to the differential
approximation, a slight deviation (about 5%) could occur as the Knudsen number increases.

Additionally, according to Eqs. (8) and (13), we can obtain the cross-plane thermal resistance of
the nanofilms,

Rcr ¼ Lx
k0

1þ 4
3
Knx

� �
¼ R0 þ Rball; (14)

in which R0 ¼ Lx=k0 is the benchmark thermal resistance calculated by the classical Fourier’s law,
and Rball ¼ 4= vgCV

� �
is the ballistic thermal resistance [7, 33]. Figure 4 shows the cross-plane

thermal resistances calculated by the model and MC simulations, respectively. The boundary
temperature jumps reduce the effective temperature difference imposed on the nanofilms, resulting
in an increase in cross-plane thermal resistance; that is, a reduction in effective thermal conductivity.
In addition, referring to Maassen and Lundstrom [7, 8], this phenomenon could be explained as the
influence of the ballistic thermal resistance, which is enhanced as the Knudsen number increases. In
addition, as reported in Hua and Cao [6, 16], Kaiser et al. [10], and Majumdar [13], the model Eq.
(14) could be a fairly good approximation of the phonon BTE for cross-plane heat conduction in
nanofilms with ideal boundaries; thus, it can well predict the results obtained by MC simulations,
and the maximum deviation should be less than 5%.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x / Lx

(T
(x

)-
T

c)
 / 

(T
h-

T
c)

MC:
Kn

x
 = 0.01

Kn
x
 = 0.1

Kn
x
 = 1

Kn
x
 = 2

Kn
x
 = 5

Model:
 Fourier's law
Kn

x
 = 0.1

Kn
x
 = 1

Kn
x
 = 2

Kn
x
 = 5

Figure 3. Temperature distributions in cross-plane nanofilms with ideal and reflectionless boundaries.
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Boundary temperature jump with interface effect

An ideal and reflectionless boundary is not realistic in practice, because interfaces frequently exist at
boundaries [21]. Therefore, the influence of the phonon property dissimilarity should be taken into
account. Regarding this, the positive heat flux becomes

qþx ¼ �
2π

0
dφ �

1

0
μdμ � �hωvghD ωð Þdωthf f0ωðThÞ � �

2π

0
dφ �

0

�1
μdμ � �hωvgD ωð Þdωrfhfω; (15)

in which thf is the transmissivity from the heat sink to the film, and rfh is the reflectivity back to the
film. By using the differential approximation and the Debye approximation, Eq. (15) is rewritten as

qþx ¼ CvhvghTh

2
�
1

0
thfμdμ�

CvvgT

2
�
0

�1
rfhμdμþ

Cvvgl0
2

@T
@x

�
0

�1
rfhμ

2dμ: (16)

At room temperature, the diffusive mismatch model (DMM) is frequently used to characterize the
transmissivity and reflectivity at interfaces [34]. Then we have

thf ¼ Cvvg
CvhvghþCvvg

rfh ¼ Cvvg
CvhvghþCvvg

; (17)

in which CVh and vgh are the heat capacity and group velocity of heat sink material, respectively.
Because thf and rfh are independent of μ in the DMM, Eq. (16) is simplified as

qþx ¼ thf
CvhvghTh

4
þ rfh

CvvgT

4
þ Cvvgl0

6
rfh

@T
@x

: (18)

Combining Eqs. (2), (9), and (18) yields the boundary temperature jump at x = 0,
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Figure 4. Cross-plane thermal resistance of nanofilms with ideal and reflectionless boundaries.
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Th
Cvhvgh
Cvvg

thf
1� rfh

� �
� Tj0 ¼ � 2

3
l0

1þ rfh
1� rfh

� �
@T
@x

���
0
) Th � Tj0 ¼ � 2

3
l0

1þ rfh
1� rfh

� �
@T
@x

���
0
: (19)

In addition, following the same steps, we can derive the boundary temperature jump at x = L,

TjL � Tc
Cvcvgc
Cvvg

tcf
1� rfc

� �
¼ � 2

3
l0

1þ rfc
1� rfc

� �
@T
@x

���
L
) TjL � Tc ¼ � 2

3
l0

1þ rfc
1� rfc

� �
@T
@x

���
L
; (20)

where the transmissivity tcf and the reflectivity rfc are also calculated by the DMM [29].
Then, combining Eqs. (8), (19), and (20) yields the temperature distribution within the nanofilms

considering the interface effect; that is,

TðxÞ ¼
Th þ ðTc � ThÞ x

Lx

h i
þ 2

3Knx
1þrfh
1�rfh

Tc þ 1þrfc
1�rfc

Th

	 

1þ 2

3Knx
1þrfh
1�rfh

þ 1þrfc
1�rfc

	 
 : (21)

Similarly, as Knx ! 0, Eq. (21) is also reduced to the diffusive solution, TðxÞ ¼ Tc þ ðTh � TcÞx=Lx.
In contrast, as Knx ! 1, Eq. (21) becomes

TðxÞ ¼
1þrfh
1�rfh

Tc þ 1þrfc
1�rfc

Th

1þrfh
1�rfh

þ 1þrfc
1�rfc

; (22)

which is different from the Casimir limit, due to the interface effect. Figure 5 illustrates the
temperature distributions in the cross-plane nanofilms in this case. Here, we assume that the heat
sinks are made of germanium (Ge) and the nanofilm is made of silicon (Si). Referring to Chen’s
work [32], we have CV Si ¼ 0:93� 106J=m3K, ρSi¼ 2330kg=m3, vg Si¼ 1804m=s, MFPSi ¼ 260:4nm,
CV Ge ¼ 0:87� 106J=m3K, ρGe¼ 5500kg=m3, vg Ge¼ 1042m=s, and MFPSi ¼ 198:6nm. Then, the
corresponding transmissivity and reflectivity are calculated by the DMM, Eq. (17). In this case,
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Figure 5. Temperature distributions in cross-plane nanofilms with interface effects.
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both the ballistic transport and interfacial resistance can cause the boundary temperature jumps,
which are enhanced with increasing Knudsen number. In addition, the model Eq. (21) can well
predict the results obtained by MC simulations.

Furthermore, according to Eqs. (8) and (21), we can derive the total cross-plane thermal
resistance,

Rcr interface ¼ Lx
k0

1þ 2
3
Knx

1þ rfh
1� rfh

þ 1þ rfc
1� rfc

� �� �
¼ R0 þ Rcoup; (23)

in which Rcoup is the thermal resistance resulting from ballistic transport and interface effects.
Figure 6 shows the cross-plane thermal resistances calculated by the model and MC simulations,
respectively. Due to the interface effect, the thermal resistance is significantly enhanced compared to
that with the ideal boundaries, and it increases with increasing Knudsen number. In addition, the
model Eq. (23) can well predict the thermal resistances obtained by MC simulations, and the
deviation between them is less than 5%.

For comparison, we also calculate the total thermal resistance by the standard analysis based on
Fourier’s law, which is given by

RFo ¼ Rh þ Rc þ Lx
keff Lxð Þ ; (24)

where Rh ¼ 4= 1� rfhð ÞCvvg
� �

and Rc ¼ 4= 1� rfcð ÞCvvg
� �

are the interfacial resistances calculated by
the DMM, and keff is the effective thermal conductivity, which can concern the size effects due to the
ballistic transport or boundary scattering. The effective thermal conductivity of cross-plane nano-
films could be calculated as keff ¼ k0= 1þ 4=3Knxð Þ [13] and thus the total resistance is rewritten as

RFo ¼ Lx
k0

1þ 4
3
Knx þ 4

3
Knx

1� rfh
þ 4
3

Knx
1� rfc

� �
; (25)

which could be regarded as a summation of the diffusive, ballistic, and interfacial resistances.
Importantly, in the standard analysis, the influence of interfacial resistance is localized at the
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Figure 6. Cross-plane thermal resistance of nanofilms with interface effects.
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interface and thus is decoupled from the ballistic effect. As shown in Figure 6, the standard analysis
considerably overpredicts the thermal resistances calculated by MC simulations. In fact, referring to
Eq. (23), the ballistic transport and interface effects are coupled in the ballistic–diffusive heat
conduction, whereas the standard analysis, where the interface effect has been treated as a single
interfacial resistance, ignores this interface–ballistic coupling effect. Actually, the time-domain
thermoreflectance experiments by Wilson and Cahill [21] have demonstrated two features incon-
sistent with the standard interfacial resistance analysis; that is, the dependence of the interface
resistance on the periodic heating frequency and the significant differences between the interfacial
resistances of Si versus Si0.99Ge0.01. In order to explain this, Wilson and Cahill [21] proposed that the
interfacial resistance should depend on the phonon MFPs in the ballistic–diffusive heat conduction,
indicating the interface–ballistic coupling effect indeed. In addition, Liang et al. [35] highlighted the
effects of film thickness and roughness on the thermal transport through an interface by molecular
dynamics simulations, further indicating the invalidity of the standard interfacial resistance analysis.
In fact, the interface–ballistic coupling effect should be critically important in practice, especially for
experimental data analyses. For example, in the experiments of Raja et al. [36], the authors intended
to identify the thermal ballistic transport in smooth Si nanowires by measuring the length-dependent
thermal conductivity, where the interfaces between the samples and the supporting beams became a
critical issue; therefore, the authors proposed that the influence of the contact resistance could be
calculated as the intercept of a best fit line to the total thermal resistance, and then the actual thermal
conductivity of the nanowires could be obtained by subtracting the fitting contact resistance from
the total one. However, the experimental data analysis method proposed by Raja et al. [36] should
merely be right for a purely diffusive heat conduction and may be inapplicable in the ballistic–
diffusive regime due to the interface–ballistic coupling effects. According to Eq. (23), the ballistic
transport–induced thermal resistance is coupled with the interfacial resistance; that is, Rcoup. Thus,
subtracting the fitting contact resistance could eliminate the influence resulting from both the
ballistic transport and the interface effects. This may also be why Raja et al. [36] did not find the
ballistic thermal transport across O (100) nanometer length scales even in smooth Si nanowires.

Boundary heat flux slip

Boundary heat flux slip in suspended nanofilm

The boundary heat flux slip, induced by the lateral confinement, is another important slip boundary
condition in ballistic–diffusive heat conduction. The heat flux slip in a suspended in-plane nanofilm
has been characterized by using the phonon BTE [4, 5, 17, 20]. In this case, the length in the
x-direction is assumed to be much larger than the phonon MFP, whereas the y-directional width is
comparable to the MFP. The phonon BTE is thus given by [17]

vgωyτω
@Δfω
@y

þ Δfω ¼ �vgωxτω
@fω0
@T

dT
dx

; (26)

with boundary conditions

Δfωð0; vgωy > 0Þ ¼ PΔfωð0; vgωy < 0Þ;
ΔfωðLy; vgωy < 0Þ ¼ PΔfωðLy; vgωy > 0Þ; (27)

where Δfω ¼ fω � f0ω; P is the phonon specularity parameter, which depends on the boundary
roughness [22], P ¼ exp �16π2Δ2=λ2

� �
, in which Δ is the root mean square value of the roughness

fluctuations; and λ is phonon wavelength. Because the in-plane nanofilm is suspended, the lateral
boundaries are adiabatic, and all of the phonons striking on them should be reflected back.

By using the methodology proposed by Ziman [22], Eq. (25) has a solution as
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Δfω ¼
vgωxτω

@f0
@T

dT
dx

	 

1�P

1�P expð�Ly=vgωyτωÞ expð�
y

vgωyτω
Þ � 1

� �
vgωy > 0

vgωxτω
@f0
@T

dT
dx

	 

1�P

1�P expðLy=vgωyτωÞ expð
Ly�y
vgωyτω

Þ � 1

� �
vgωy < 0

8>><
>>: (28)

The heat flux distribution is calculated as

q yð Þ ¼ �
2π

0
dφ �

1

�1
dμ � �hωvgωxD ωð ÞdωΔfω: (29)

By using the Debye approximation, we have

qðyÞ
q0

¼ 1� 3
4
�
1

0

1� P
1� P expð� 1

μKny
Þ exp � y=Ly

μKny

� �
þ exp � 1� y=Ly

μKny

� �� �
1� μ2
� �

dμ; (30)

where Kny ¼ l0=Ly is the Knudsen number, and q0 ¼ �k0dT=dx is the benchmark heat flux
calculated by Fourier’s law. Figure 7 shows the heat flux distributions for the in-plane heat conduc-
tion in suspended nanofilms. The good agreement between MC simulations and the model Eq. (30),
have been achieved. It is found that due to the diffusive phonon boundary scattering, the heat flux is
reduced near the boundaries, and the completely specular boundary scattering (P = 1) will not cause
the boundary heat flow slip in this case. In addition, with increasing Knudsen number, Kny, the
influence of boundary scattering is enhanced, reducing the heat flux.

Additionally, referring to Eq. (30), the in-plane thermal resistance is given by [17]

Rin ¼ Lx
k0Ly

1� 3Kny 1� Pð Þ
2

�
1

0

1� exp � 1
μKny

	 

1� P exp � 1

μKny

	 
 1� μ2
� �

μdμ

2
4

3
5
�1

; (31)
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Figure 7. Heat flux distributions for in-plane heat conduction in suspended nanofilms.

NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING 169



in which Lx=k0Ly is the benchmark thermal resistance predicted by Fourier’s law. Actually, Eq. (31) is a
transform of the widely used Fuchs-Sondheimer formula [17, 19]. Figure 8 shows the in-plane thermal
resistance of the suspended nanofilms. The predictions of Eq. (31) well agree with those obtained byMC
simulations. The in-plane resistance increases with increasing Knudsen number (Kny) or decreasing
specularity parameter (P). As P = 1, the specular boundary scattering does not cause the boundary heat
flux slip, and the in-plane thermal resistance will not be reduced by the lateral confinement, and it
becomes independent on the Knudsen number Kny. Nevertheless, we note that the conclusion that the
purely specular boundary scattering does not increase the thermal resistance is only valid for some
typical nanostructures such as films and wires; Hua and Cao [37] demonstrated that it could also reduce
the thermal conductivity (i.e., increase the thermal resistance) for nanoporous films.

Boundary heat flux slip in nanofilm on substrate

The interface effect induced by the substrate is a significant issue that could impact the heat flux
distribution within an in-plane nanofilm on substrate, as shown in Figure 2b. The phonons in the
nanofilm on the substrate can scatter at the interface as in the case of the suspended nanofilm; in
addition, they can pass through the interface and enter the substrate; at the same time, the phonons
in the substrate can also enter the nanofilm. In this case, two main factors could affect the heat flux
distribution within the nanofilms on a substrate [24]: phonon reflection at the boundary as well as
the interface and perturbation of the phonon distribution function induced by the substrate. Then,
the phonon BTEs for the nanofilm labeled by “a” and the substrate labeled by “b” are given by

vgωyaτωa
@Δfωa
@y

þ Δfωa ¼ �vgωxaτωa
@fω0a
@T

dT
dx

; (32)

and
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Figure 8. In-plane thermal resistance of suspended nanofilms.
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vgωybτωb
@Δfωb
@y

þ Δfωb ¼ �vgωxbτωb
@fω0b
@T

dT
dx

; (33)

with the interface and boundary conditions [24, 38]

ΔfωaðLya; vgωya < 0Þ ¼ PaΔfωaðLya; vgωya > 0Þ;
Δfωað0; vgωya > 0Þ ¼ Pab raaΔfωað0; vgωya < 0Þ þ tbaΔfωbð0; vgωyb > 0Þ� �

;

Δfωbð0; vgωyb < 0Þ ¼ Pab rbbΔfωbð0; vgωyb > 0Þ þ tabΔfωað0; vgωya < 0Þ� �
;

Δfωbð�Lyb; vgωyb > 0Þ ¼ 0:

(34)

where raa and rbb are the reflection coefficients at the interface; tab and tba are the transmission
coefficients; and Pa and Pab are the specularity parameters. Because the substrate is generally thicker
than the nanofilm and holds the short phonon MFPs, the interface/boundary effects could be non-
significant in the substrate. Therefore, we focus on the heat flux distribution within the nanofilms and
the remote boundary of the substrate is assumed to be completely diffusive for simplicity.

Then, we can derive the solutions of the phonon BTEs above:

Δfωa ¼
vgωxaτ

@fω0a
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dT
dx Gþ

a expð� y
vgωyaτωa
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: ; (35)

with
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with
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in which lωa ¼ vgωaτωa and lωb ¼ vgωbτωb are the phonon MFPs for the nanofilm and the substrate,
respectively, and the MFP ratio is γab ¼ lωa=lωb.

Furthermore, by using the Debye approximation, the heat flux distribution within the nanofilm
(0 � y< Lya) is written as

qaðyÞ
q0a

¼ 1� 3
4
�
1

0
Gþ
a expð� y=Lya

μKnya
ÞþG�

a expðy=Lya
μKnya

Þ
� �

1� μ2
� �

dμ; (39)

in which Knya ¼ l0a=Lya is the Knudsen number, l0a is the average phonon MFP, and the benchmark
heat flux, q0a, is equal to � k0adT=dx.

Figure 9 shows the heat flux distributions within the in-plane nanofilms on a substrate. The
nanofilm and the substrate are assumed to be made of Si and Ge, respectively. The MFP ratio is
γ ¼ MFPSi=MFPGe ¼ 1:3, and the reflectivity and transmissivity—that is, raa, rbb, tab, and tba—can
also be estimated by using the phonon properties of Si and Ge [32]. For phonons’ specular
transmission and reflection at the interface, the acoustic mismatch model is generally employed to
calculate the angle-dependent transmissivity and reflectivity [39]. In fact, the reflection and trans-
mission at the interface could be a complicated process; for example, the effects of the phonon mode
conversion [40] and the strength of the bond between the atoms at the interface [41] could affect
them. For simplicity, we further introduce a few assumptions into both the model and the simula-
tions. Mode conversion at the interface is ignored, which has been proven to be a good approxima-
tion [32]. The average integrated specular transmissivity and reflectivity, which are angle
independent, are calculated by using Prasher’s method [41]; that is,

�tSi GeðGe SiÞ ¼ 2 �
θc

0
tSi GeðGe SiÞ cosðθÞd cosðθÞ

�rSi GeðGe SiÞ ¼ 1��tSi GeðGe SiÞ
; (40)
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Figure 9. Heat flux distributions for in-plane heat conduction in nanofilms on a substrate.
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tSi GeðGe SiÞ ¼ 4zSizGe cosðθSiÞ cosðθGeÞ
zSi cosðθSiÞ þ zGe cosðθGeÞ½ �2 ; (41)

in which zSi ¼ ρSivg Si, zGe ¼ ρGevg Ge, and sinðθSiÞ=vg Si ¼ sinðθGeÞ=vg Ge. In addition, referring to
Chen’s paper [32], when using the acoustic mismatch model, due to the energy balance requirement,
a modification of the transmissivity should be adopted; that is, �t0Si Ge ¼ �tGe Si vg GeCV Ge=vg SiCV Si

� �
and �r0Si Ge ¼ 1��t0Si Ge. According to Figure 9, the heat flux is also reduced near the boundary and
the interface, and this heat flux slip phenomenon is enhanced with increasing Knya, as in the case of
the suspended nanofilms. However, the interface effect indeed indicates some differences. The heat
flux distribution becomes asymmetrical due to the perturbation of the phonon distribution function
near the interface. If we increase the MFP ratio, γ, from 1.3 to 5, the heat flux near the interface is
further reduced. As P ¼ 1—that is, the diffusive boundary scattering is completely eliminated—the
heat flux distribution within the suspended nanofilms becomes a linear function, whereas the heat
flux is still affected by the interface in the nanofilms on the substrate. In addition, the present model
can fairly well characterize the heat flux distribution within the nanofilms on a substrate compared
to MC simulations, though some deviations could exist.

Furthermore, using Eq. (39), the thermal resistance of the nanofilm on a substrate is obtained:

Rin interface ¼ R0a 1� 3Knya
4

�
1

0
Gþ
a þ G�

a

� �
1� expð� 1

μKnya
Þ

� �
1� μ2
� �

μdμ

( )�1

; (42)

in which R0a ¼ Lx= k0aLya
� �

is the benchmark thermal resistance based on Fourier’s law. We note
that in the theoretical frame based on Fourier’s law, the thermal resistance of the nanofilms on a
substrate should be identical to that of the suspended nanofilms, because there will be no net heat
flux through the interface. In contrast, in the ballistic–diffusive heat conduction, both the boundary
scattering and the interface effect could affect the thermal resistance. The influence of the boundary
scattering on the thermal resistance of the in-plane suspended nanofilms has been well described by
the Fuchs-Sondheimer formula [4, 17]; a model beyond the Fuchs-Sondheimer formula, which can
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Figure 10. In-plane thermal resistance of nanofilms on a substrate.
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address both boundary scattering and interface (substrate) effects, is indeed needed, such as in the
case of supporting graphene [27]. Figure 10 compares the in-plane thermal resistances of the
nanofilms on a substrate calculated by the model and MC simulations, respectively. The thickness
of the nanofilms (Lya) ranges from 100 to 500 nm, and the thickness of the substrate (Lyb) is set as
500 nm. It is found that the thermal resistance increases with increasing Knudsen number (Knya),
decreasing specularity parameter (P), or increasing MFP ratio (γ). Importantly, even when P = 1, the
interface effect alone can also increase the in-plane thermal resistance. In addition, the present model
can well predict the results by MC simulations, especially as P is small, and the maximum deviation
is less than 20%.

Conclusions

In ballistic–diffusive heat conduction, interactions between phonons and boundaries (or inter-
faces) can cause two kinds of slip boundary conditions: boundary temperature jump and
boundary heat flux slip. In the present work, we used the phonon BTE and the phonon tracing
MC method to study these two slip boundary conditions in nanofilms on a substrate. The
thermal transport in nanofilms has generally been clarified into two typical types; that is,
cross-plane heat conduction and in-plane heat conduction. In the cross-plane case where the
boundary temperature jump is the dominant non-Fourier phenomenon, ballistic transport leads
to temperature jumps and thus introduces ballistic thermal resistance; in addition, both the
boundary temperature jump and the cross-plane thermal resistance increase with increasing
Knudsen number. When considering interface effects, the temperature jump and the total
thermal resistance are both enhanced, and the interface–ballistic coupling effect was identified,
indicating the inapplicability of the standard thermal resistance analysis. In addition, the bound-
ary temperature jump model considering interface effects was derived from the phonon BTE, and
it was verified by comparison with MC simulations. In contrast, the in-plane heat conduction is
controlled by the boundary heat flux slip. Both the phonon boundary scattering and perturbation
of phonon distribution function induced by interface could cause heat flux slip, leading to a
variation in in-plane thermal resistance. Even as the diffusive boundary scattering is completely
eliminated—that is, P = 1—the interface effect alone could also cause the heat flux slip as well as
a change in in-plane thermal resistance. Furthermore, a model beyond the Fuchs-Sondheimer
formula, which addresses both boundary scattering and interface effects, was obtained from the
phonon BTE, and good agreement with our MC simulations indicates its validity. Our work has
highlighted the interface effects on the slip boundary conditions in ballistic–diffusive heat
conduction and can provide a more in-depth understanding as well as some analytical models
for predicting and controlling nanoscale thermal transport.
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